Asides

Water Resources Staff Engineer WEST Consultants

In this Entry Level Water Resources Staff Engineer position, you will apply your knowledge of principles of hydrology and hydraulics to respond to a broad range of water resources engineering assignments in surface-water riverine and estuarine environments to:

  • Study open channel flow, sediment transport, scour, stability, and deposition issues in rivers and reservoirs.
  • Estimate flood hazards and risk. Develop mitigation measures and alternatives for watersheds, including flood forecasting and inundation mapping.
  • Evaluate complex water resource systems including watersheds receiving rain and snow.
  • Perform integrated hydrologic modeling including potential impacts on surface and groundwater due to climate changes.
  • Conduct dam/levee engineering and safety investigations to include dam breach analysis, feasibility planning, operations studies, drainage analysis, water control manual updates.
  • Work as part of a project team to develop high quality deliverables for our clients.
WHAT IS PROCESS-BASED RIVER RESTORATION? 4 CRITERIA

More and more projects bill themselves as ‘process-based’. What distinguishes a real process-based project? Damion Ciotti and co-authors provide a concise summary in their new paper, ‘Design Criteria for Process-Based Restoration of Fluvial Systems’. The paper is freely available online from the journal Bioscience.

Project manager for stream restoration, and certifying farms for climate adaptation fish friendly farming

CLSI operates the award-winning Fish Friendly Farming (FFF) Certification Program in 15 California counties. Over 200,000 acres are enrolled in the program. The FFF program is a robust certification program that assesses the natural resources of individual farm parcels and includes slopes, soils and creeks and inventories management practices such as soil and water conservation, chemical use, water sources and other practices. We complete maps and a detailed farm plan which specifies Best Management Practices (BMPs) to improve water quality, reduce chemical use, conserve water, revegetate and restore habitats and other actions. In Napa over 90% of the vineyards are FFF certified. CLSI certifies over 15 crops including fruit and nut orchards, field crops, vineyards, cannabis and ranch land.

CLSI also operates the Climate Adaptation Certification, the first agricultural certification program. This program models greenhouse gas emissions and carbon sequestration for all activities on a farm – cover crops, tillage, nitrogen use, burning, diesel equipment use and other actions as well as carbon sequestered in soils, hedgerow and native habitat plantings and existing open space and habitats on the property. Two future scenarios with changed practices are also modeled.

CLSI carries out its programs and projects by establishing collaborative relationships with landowners/managers and agricultural organizations. CLSI also completes scientific studies and monitoring in cooperation with agencies, environmental groups, landowners and other scientists. The organization’s offices are located in Napa, California.

We are seeking a Project Manager to carry out a range of activities including implementation of the FFF program for both irrigated lands and rangeland, implementation of the Climate Adaptation Certification program, technical assistance with state soil health programs and the implementation of erosion control and stream restoration projects. The Project Manager will be an integral part of a small and collaborative staff who works together closely. Salaries are based on experience and education and are competitive for the SF Bay Area. Dental and medical benefits, and a retirement program are included. CLSI is an equal opportunity employer. Submit resume to laurelm@fishfriendlyfarming.org by October 8, 2021.

Eco-Engineer/Eco-Hydrologist – cbec eco engineering

cbec eco engineering is seeking to hire a skilled Eco-Engineer/Eco-Hydrologist I to assist the company in providing technical services to clients. Individuals’ professional experience should include 2+ years technical experience in water resources with a B.S. degree or candidates should have an M.S. or Ph.D. in civil engineering, environmental engineering, water resources, hydrology, or fluvial geomorphology. Responsibilities will include performing technical studies in the fields of hydrology, hydraulics, geomorphology, water quality and restoration design. Tasks will involve developing and applying numerical models, collecting field data, contributing to environmental rehabilitation project design, producing technical reports and figures and potentially managing small projects. Experience developing and applying hydrologic and hydraulic numerical models and competence in coding and GIS are desired. This position offers a great opportunity to work with a passionate and technically proficient team developing scientifically rigorous assessments and restoration designs in a diverse range of California stream, river, wetland and estuary environments.

THE SOCIAL LIFE OF SEDIMENT

Rivers carry not only water, but also sediment. Yet sediment has been largely neglected in many studies of river history, and in current management plans. Profs Giacomo Parrinello and Matt Kondolf review how sediment has been treated (or ignored) by scholars in this introduction to a special issue in the journal Water History.

KLAMATH DAM REMOVAL MOVING FORWARD: CBS NEWS

Riverlab is supporting the ongoing effort to remove four hydroelectric dams on the Klamath River, building on research conducted by Mark Tompkins and Matt Kondolf over a decade ago. An agreement among Tribes, NGOs, local stakeholders, the states of California and Oregon, and importantly, the owner of the dams, has paved the way for removing the dams starting in 2023, as reflected in this recent CBS News report. It will be the largest dam removal in the country and promises to benefit salmon runs in the river, which have been reduced by impacts of the dams and land use in the basin.

THE BERKELEY URBAN RIVERS SYMPOSIUM

12 May 2021, 10am-1245pm PST (online)

This symposium begins with a keynote talk on ‘Restoring ecological processes in an urban river: the Isar in Munich’, presented by Dr Aude Zingraff-Hamed (Technical University of Munich). The Isar is an excellent example of how an important urban river can be restored to yield ecological and social benefits, an example from which we can learn in approaching our urban rivers. Next are graduate student research projects on riparian vegetation along Tassajara Creek, Dublin, 20 years post-restoration; tracing the Alhambra Wash in Los Angeles; the restored Yitong River waterfront in Changchun, China; managing encampments in waterways around the San Francisco Bay; and flood risk management and the ‘levee effect’ in West Sacramento, California. An expert panel including Prof Joe McBride (UC Berkeley) and Amanda Booth (City of San Pablo) reflects on themes raised in the student research projects.

Naturally deposited gravel bars in the Isar River provide habitat for a range of species, but especially for urban residents. (Photo by Matt Kondolf, July 2013)

You can also click on each of the session titles below (highlighted in blue) to download the video recordings.

Program

10AM Keynote & Discussion

Restoring ecological processes in an urban river: the Isar in Munich, by Dr Aude Zingraff-Hamed, Technical University of Munich

10:45AM Graduate Student Research Projects

a. Twenty Years Later: Long-term monitoring of restored floodplain vegetation, Tassajara Creek, California, by Skyler Lewis

b. Tracing the Alhambra Wash: Past, Present, and Future, by Dana Tinio

Break

c. Post-Occupancy Evaluation of the restored Yitong River waterfront in Changchun, by Zhufeng Pan

d. Managing Encampments in Waterways Around the San Francisco Bay Region: Policy and Practice, by Isabelle Doerschlag

e. Flood Risk Management and the Levee Effect in West Sacramento, California, by Corey Ng

12:15PM Panel Discussion

Amanda Booth, Joe McBride


Keynote and Panelist Biographies

Dr. Aude Zingraff-Hamed is research associate and lecturer at the Technical University of Munich, Chair for Strategic Landscape Planning and Management. Her research concerns river restoration, urban studies, nature-based solutions, hydro-meteorological risk, climate change, and water governance. She works currently on the PHUSICOS H2020 project https://phusicos.eu/  As a visiting scholar with Riverlab, she is exploring opportunities and constraints to implementing socio-ecological river restoration in highly urban contexts.

Joe R. McBride is Professor Emeritus of Ecology in the Department of Landscape Architecture and Environmental Planning at the University of California, Berkeley.  His research has been focused on forest ecology with emphasis on riparian woodlands in California and the ecology of streams in urban areas. His book The World’s Urban Forests: History, Composition, Design, Function and Management is a reference in the field.

Amanda Booth is the Senior Environmental Program Analyst for the City of San Pablo. Ms. Booth has over 10 years of experience in developing and delivering various environmental programs, including managing the stormwater and sustainability programs for the City of San Pablo.


Abstracts

Restoring ecological processes in an urban river: the Isar in Munich
Dr Aude Zingraff-Hamed, Technical University of Munich

The transboundary Isar River flows from the Bavarian Alps into one of the last free-flowing sections of the Danube. The Isar was fundamental to the establishment of Munich and other cities located on its banks, and underwent morphological changes from human activity since the 18 th century, but especially with the boom in hydro-electrical production after the First World War. Starting in the late 20 th century, years of collaborative planning, pressure from civil society, changes in government institutions, and strong partnerships among non-government organizations, the river management approach changed from a traditional grey infrastructure-based approach to nature-based practices. The restoration of the Isar in Munich demonstrates that socio-ecological restorations are possible even in metropolitan city centers. Ultimately, the Isar River is an example of how civil society’s perception of ecosystem losses can lead to positive changes in water governance.

Twenty Years Later: Long-term monitoring of restored floodplain vegetation, Tassajara Creek, California 
Skyler Lewis

Actively incising Lower Tassajara Creek in Dublin, California, was restored as a compound channel in 1999-2000 to mitigate incision and provide flood conveyance capacity to reduce flood risk to an adjacent greenfield residential development. The compound channel design incorporated wide floodplain terraces, planted with native riparian and upland vegetation. Prior geomorphological and ecological studies conducted in the first decade after the restoration project suggested that the project had successfully halted channel incision and that riparian vegetation was developing. I built upon the last vegetation study in 2008, recreating the photo monitoring points and resurveying the established vegetation transects for the Tassajara Creek project’s northern reach. I also used remote sensing to quantify changes in vegetation cover over the last decade, finding a 63% increase in vegetation cover. Both field and remote sensing analyses indicated continued tree canopy growth and maturation of the riparian ecosystem in this restored urban stream. 

Flood Risk Management and the Levee Effect in West Sacramento, California
Corey Ng

I document the recent history of flood risk management and floodplain development in West Sacramento, a flood prone city adjacent to the state capital.  While West Sacramento participates in the National Flood Insurance Program, the Flood Insurance Rate Map for the city is outdated and does not adequately reflect actual flood risk. Analyses of US Census data, National Flood Insurance Program products, zoning ordinances, and remote sensing data indicate that development has continued in areas exposed to high flood hazard, increasing the risk of life and property to flooding. 

Student Presentations and Publications – 16th Annual River Restoration Symposium

A Social Analysis of the San Marcos River
Lilly Byrd

Carbon sequestration potential on a reconnected floodplain: insights from the Cosumnes River, California
Britne Clifton

Fire and Water: Establishing a Geomorphic Baseline for a Perennial Stream in the Walbridge Fire Footprint
Morgan Cooney, Adrienne Dodd, and Molly Oshun

A Restoration on Yongding River, Beijing
Yifan Feng

Salinas River: Historical context, maintenance, and biodiversity
MaFe Gonzalez

The impact of water level fluctuation on vegetation: An assessment of Zhenjiang Section of Yangtze River
Trista Hu

Riparian vegetated buffer in Chinese urban wetlands: a case study of Xixi wetland, Hangzhou
Karen Jin and Jingyi Chen

Restoring San Leandro/Lisjan Creek: Re-establishing Sacred Relationships as Pathways toward Decolonization
Janet Le

The Urban Gauntlet for Steelhead Trout: A Reconnaissance Study of Habitat in Upper Bollinger and Little Pine Creeks, Contra Costa County
Ali Parmer, Derek Morimoto, and Rebecca Kaliff

Understanding the water, understanding the canyon: establishing a baseline study of the Redwood Canyon reach of Cerrito Creek in Blake Garden
Camille Thoma and Dulce Rivas

The Social Evaluation of the Interval River of Shanghai Houtan Wetland Park
Peixuan Wu, Yuetian Wang, and Zhehang Li